曙海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
 
     班级规模及环境--热线:4008699035 手机:15921673576( 微信同号)
         每期人数限3到5人。
     上课时间和地点
  上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦
最近开课时间(周末班/连续班/晚班):2020年3月16日
     实验设备
       ☆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆合格学员免费推荐工作
        ★实验设备请点击这儿查看★
     质量保障
 

        1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
        2、培训结束后,授课老师留给学员联系方式,保障培训效果,免费提供课后技术支持。
        3、培训合格学员可享受免费推荐就业机会。

 
课程大纲
   
 
  • 课程介绍
    In this course, students review the basic concepts of data mining and learn how leverage the predictive analytical power of the Oracle Database Data Mining option by using Oracle Data Miner 11g Release 2. The Oracle Data Miner GUI is an extension to Oracle SQL Developer 3.0 that enables data analysts to work directly with data inside the database.
    The Data Miner GUI provides intuitive tools that help you to explore the data graphically, build and evaluate multiple data mining models, apply Oracle Data Mining models to new data, and deploy Oracle Data Mining's predictions and insights throughout the enterprise. Oracle Data Miner's SQL APIs automatically mine Oracle data and deploy results in real-time. Because the data, models, and results remain in the Oracle Database, data movement is eliminated, security is maximized and information latency is minimized.

    课程对象: Oracle数据库技术人员

  • 课程大纲:

            Introduction
                Course Objectives
                Suggested Course Pre-requisites
                Suggested Course Schedule
                Class Sample Schemas
                Practice and Solutions Structure
                Review location of additional resources (including ODM and SQL Developer documentation and online resources)
           Overviewing Data Mining Concepts
                What is Data Mining?
                Why use Data Mining?
                Examples of Data Mining Applications
                Supervised Versus Unsupervised Learning
                Supported Data Mining Algorithms and Uses
           Understanding the Data Mining Process
                Common Tasks in the Data Mining Process
           Introducing Oracle Data Miner 11g Release 2
                Data mining with Oracle Database
                Introducing the SQL Developer interface
                Setting up Oracle Data Miner
                Accessing the Data Miner GUI
                Identifying Data Miner interface components
                Examining Data Miner Nodes
                Previewing Data Miner Workflows
           Using Classification Models
                Reviewing Classification Models
                Adding a Data Source to the Workflow
                Using the Data Source Wizard
                Creating Classification Models
                Building the Models
                Examining Class Build Tabs
                Comparing the Models
                Selecting and Examining a Model
           Using Regression Models
                Reviewing Regression Models
                Adding a Data Source to the Workflow
                Using the Data Source Wizard
                Performing Data Transformations
                Creating Regression Models
                Building the Models
                Comparing the Models
                Selecting a Model
           Performing Market Basket Analysis
                What is Market Basket Analysis?
                Reviewing Association Rules
                Creating a New Workflow
                Adding a Data Source to th Workflow
           Creating an Association Rules Model
                Defining Association Rules
                Building the Model
                Examining Test Results
           Using Clustering Models
                Describing Algorithms used for Clustering Models
                Adding Data Sources to the Workflow
                Exploring Data for Patterns
                Defining and Building Clustering Models
                Comparing Model Results
                Selecting and Applying a Model
                Defining Output Format
                Examining Cluster Results
           Performing Anomaly Detection
                Reviewing the Model and Algorithm used for Anomaly Detection
                Adding Data Sources to the Workflow
                Creating the Mode
                Building the Model
                Examining Test Results
                Applying the Model
                Evaluating Results
           Deploying Data Mining Results
                Requirements for deployment
                Deployment Tasks
                Examining Deployment Options

 

 
热线:4008699035 手机:15921673576( 微信同号)
备案号:备案号:沪ICP备08026168号-1 .(2024年07月24日)......................
友情链接:Cadence培训 ICEPAK培训 EMC培训 电磁兼容培训 sas容培训 罗克韦尔PLC培训 欧姆龙PLC培训 PLC培训 三菱PLC培训 西门子PLC培训 dcs培训 横河dcs培训 艾默生培训 robot CAD培训 eplan培训 dcs培训 电路板设计培训 浙大dcs培训 PCB设计培训 adams培训 fluent培训系列课程 培训机构课程短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班培训 南京 NS3培训 OpenGL培训 FPGA培训 PCIE培训 MTK培训 Cortex训 Arduino培训 单片机培训 EMC培训 信号完整性培训 电源设计培训 电机控制培训 LabVIEW培训 OPENCV培训 集成电路培训 UVM验证培训 VxWorks培训 CST培训 PLC培训 Python培训 ANSYS培训 VB语言培训 HFSS培训 SAS培训 Ansys培训 短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班 端海 教育 企业 学院 培训课程 系列班 长期课程列表实践课程高级课程学校培训机构周末班 短期培训系列课程培训机构 端海教育企业学院培训课程 系列班